The Role of Autonomy in DOD Systems - Unmanned Aerial Vehicles (UAV), Robotics, Teleoperation, Haptics, Centibot, Swarmanoid, LANdroid, Remote Presence, UxV, DARPA Research, Space and Ground Systems

Nonfiction, Science & Nature, Technology, Robotics, Aeronautics & Astronautics
Cover of the book The Role of Autonomy in DOD Systems - Unmanned Aerial Vehicles (UAV), Robotics, Teleoperation, Haptics, Centibot, Swarmanoid, LANdroid, Remote Presence, UxV, DARPA Research, Space and Ground Systems by Progressive Management, Progressive Management
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Progressive Management ISBN: 9781301033881
Publisher: Progressive Management Publication: February 21, 2013
Imprint: Smashwords Edition Language: English
Author: Progressive Management
ISBN: 9781301033881
Publisher: Progressive Management
Publication: February 21, 2013
Imprint: Smashwords Edition
Language: English

The DSB Task Force on the Role of Autonomy in DoD Systems was asked to study relevant technologies, ongoing research, and the current autonomy-relevant plans of the Military Services, to assist the DoD in identifying new opportunities to more aggressively use autonomy in military missions, to anticipate vulnerabilities, and to make recommendations for overcoming operational difficulties and systemic barriers to realizing the full potential of autonomous systems. The Task Force has concluded that, while currently fielded unmanned systems are making positive contributions across DoD operations, autonomy technology is being underutilized as a result of material obstacles within the Department that are inhibiting the broad acceptance of autonomy and its ability to more fully realize the benefits of unmanned systems. Overall, the Task Force found that unmanned systems are making a significant, positive impact on DoD objectives worldwide. However, the true value of these systems is not to provide a direct human replacement, but rather to extend and complement human capability by providing potentially unlimited persistent capabilities, reducing human exposure to life threatening tasks, and with proper design, reducing the high cognitive load currently placed on operators/supervisors.

Unmanned systems are proving to have a significant impact on warfare worldwide. The true value of these systems is not to provide a direct human replacement, but rather to extend and complement human capability in a number of ways. These systems extend human reach by providing potentially unlimited persistent capabilities without degradation due to fatigue or lack of attention. Unmanned systems offer the warfighter more options and flexibility to access hazardous environments, work at small scales, or react at speeds and scales beyond human capability. With proper design of bounded autonomous capabilities, unmanned systems can also reduce the high cognitive load currently placed on operators/supervisors. Moreover, increased autonomy can enable humans to delegate those tasks that are more effectively done by computer, including synchronizing activities between multiple unmanned systems, software agents and warfighters—thus freeing humans to focus on more complex decision making.

1.0 Executive Summary * 1.1. Misperceptions about Autonomy are Limiting its Adoption * 1.2. Create an Autonomous Systems Reference Framework to Replace "Levels of Autonomy" * 1.3. Technical Challenges Remain, Some Proven Autonomy Capability Underutilized * 1.4. Autonomous Systems Pose Unique Acquisition Challenges * 1.5. Avoid Capability Surprise by Anticipating Adversary Use of Autonomous Systems * 2.0 Operational Benefits of Autonomy * 2.1. Unmanned Aerial Vehicles * 2.2. Unmanned Ground Systems * 2.3. Unmanned Maritime Vehicles * 2.4. Unmanned Space Systems * 2.5. Conclusion * 3.0 Technical Issues of Autonomy * 3.1. Motivation: What Makes Autonomy Hard * 3.2. Defining Levels of Autonomy is Not Useful * 3.3. Autonomous System Reference Framework * 3.4. Needed Technology Development * 3.5. Technical Recommendations * 4.0 Acquisition Issues of Autonomy * 4.1. Requirements and Development * 4.2. Test and Evaluation * 4.3. Transition to Operational Deployment * 5.0 Capability Surprise in Autonomy Technology * 5.1. Overview of Global Unmanned Systems * 5.2. Unmanned Symmetric Adversary Scenarios * 5.3. Value for Asymmetric Adversaries * 5.4. External Vulnerabilities * 5.5. Self-Imposed Vulnerabilities * 5.6. Recommendations . * Appendix A—Details of Operational Benefits by Domain * A.1. Aerial Systems Strategy * A.2. Maritime Systems * A.3. Ground Systems * A.4. Space Systems * Appendix B—Bibliography * Appendix C—Task Force Terms of Reference * Appendix D—Task Force Membership * Appendix E—Task Force Briefings * Appendix F—Glossary

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

The DSB Task Force on the Role of Autonomy in DoD Systems was asked to study relevant technologies, ongoing research, and the current autonomy-relevant plans of the Military Services, to assist the DoD in identifying new opportunities to more aggressively use autonomy in military missions, to anticipate vulnerabilities, and to make recommendations for overcoming operational difficulties and systemic barriers to realizing the full potential of autonomous systems. The Task Force has concluded that, while currently fielded unmanned systems are making positive contributions across DoD operations, autonomy technology is being underutilized as a result of material obstacles within the Department that are inhibiting the broad acceptance of autonomy and its ability to more fully realize the benefits of unmanned systems. Overall, the Task Force found that unmanned systems are making a significant, positive impact on DoD objectives worldwide. However, the true value of these systems is not to provide a direct human replacement, but rather to extend and complement human capability by providing potentially unlimited persistent capabilities, reducing human exposure to life threatening tasks, and with proper design, reducing the high cognitive load currently placed on operators/supervisors.

Unmanned systems are proving to have a significant impact on warfare worldwide. The true value of these systems is not to provide a direct human replacement, but rather to extend and complement human capability in a number of ways. These systems extend human reach by providing potentially unlimited persistent capabilities without degradation due to fatigue or lack of attention. Unmanned systems offer the warfighter more options and flexibility to access hazardous environments, work at small scales, or react at speeds and scales beyond human capability. With proper design of bounded autonomous capabilities, unmanned systems can also reduce the high cognitive load currently placed on operators/supervisors. Moreover, increased autonomy can enable humans to delegate those tasks that are more effectively done by computer, including synchronizing activities between multiple unmanned systems, software agents and warfighters—thus freeing humans to focus on more complex decision making.

1.0 Executive Summary * 1.1. Misperceptions about Autonomy are Limiting its Adoption * 1.2. Create an Autonomous Systems Reference Framework to Replace "Levels of Autonomy" * 1.3. Technical Challenges Remain, Some Proven Autonomy Capability Underutilized * 1.4. Autonomous Systems Pose Unique Acquisition Challenges * 1.5. Avoid Capability Surprise by Anticipating Adversary Use of Autonomous Systems * 2.0 Operational Benefits of Autonomy * 2.1. Unmanned Aerial Vehicles * 2.2. Unmanned Ground Systems * 2.3. Unmanned Maritime Vehicles * 2.4. Unmanned Space Systems * 2.5. Conclusion * 3.0 Technical Issues of Autonomy * 3.1. Motivation: What Makes Autonomy Hard * 3.2. Defining Levels of Autonomy is Not Useful * 3.3. Autonomous System Reference Framework * 3.4. Needed Technology Development * 3.5. Technical Recommendations * 4.0 Acquisition Issues of Autonomy * 4.1. Requirements and Development * 4.2. Test and Evaluation * 4.3. Transition to Operational Deployment * 5.0 Capability Surprise in Autonomy Technology * 5.1. Overview of Global Unmanned Systems * 5.2. Unmanned Symmetric Adversary Scenarios * 5.3. Value for Asymmetric Adversaries * 5.4. External Vulnerabilities * 5.5. Self-Imposed Vulnerabilities * 5.6. Recommendations . * Appendix A—Details of Operational Benefits by Domain * A.1. Aerial Systems Strategy * A.2. Maritime Systems * A.3. Ground Systems * A.4. Space Systems * Appendix B—Bibliography * Appendix C—Task Force Terms of Reference * Appendix D—Task Force Membership * Appendix E—Task Force Briefings * Appendix F—Glossary

More books from Progressive Management

Cover of the book 21st Century Essential Guide to DARPA: Defense Advanced Research Projects Agency, Doing Business with DARPA, Overview of Mission, Management, Projects, DoD Future Military Technologies and Science by Progressive Management
Cover of the book 21st Century U.S. Military Manuals: Army National Guard Training - Operational Training Programs, Specialized Training, Antiterrorism, Aviation, Combat Training Centers by Progressive Management
Cover of the book If We Don't, Who Will? Employment of the United States Army to Combat Potential Pandemic Outbreaks in West Africa: Military Assistance in the 2014 Ebola Virus Outbreak by Progressive Management
Cover of the book Principles of War for Cyberspace: Cultures of Strategy in Cyberspace, Clausewitzian Cyberthink, Sun Tzu Cyberthink, Yin and Yang in Cyberspace, Doctrine and Education by Progressive Management
Cover of the book 2011 Nuclear Power Plant Sourcebook: Plutonium Radioisotope, Radiation Health Effects and Toxicological Profile, Medical Impact, Fukushima Accident Radioactive Release by Progressive Management
Cover of the book Nuclear Terrorism: Official Response Plans for the Aftermath of a Nuclear Detonation (IND), National Capital Region, Washington, DC Planning Example - Prompt Effects, Fallout, Shelter, Evacuation by Progressive Management
Cover of the book 21st Century U.S. Military Manuals: Attack Reconnaissance Helicopter Operations Field Manual 3-04.126 (Professional Format Series) by Progressive Management
Cover of the book The Surge: General Petraeus and the Turnaround in Iraq - The Work of General David H. Petraeus to Quell Sectarian Violence by Progressive Management
Cover of the book Technology Horizons: A Vision for Air Force Science and Technology 2010-30 - Aircraft, Radar, Missiles, Satellites, Directed Energy, Launch Systems, ASAT, Cyber Systems by Progressive Management
Cover of the book Marine Advisors With the Vietnamese Marine Corps: Selected Documents prepared by the U.S. Marine Advisory Unit, Naval Advisory Group, Vietnam War History by Progressive Management
Cover of the book 21st Century U.S. Military Manuals: The Soldier's Guide Field Manual - FM 7-21.13 (Value-Added Professional Format Series) by Progressive Management
Cover of the book Institutionalized Crucible Experiences within Intermediate-Level Education: Case Studies include Navy Seals, POWs Louie Zamparini and Admiral Stockdale, and Apollo 13 Flight Director Eugene Kranz by Progressive Management
Cover of the book Silk Chutes and Hard Fighting: U.S. Marine Corps Parachute Units in World War II - Lakehurst Training Center, Parachute Accidents by Progressive Management
Cover of the book Deception: Theory and Practice - Military Deception, Army Doctrine, World War II, Vietnam, Desert Storm, Post Cold War, Surprise, Freedom of Action, Mislead the Target, Subversion, Mental Isolation by Progressive Management
Cover of the book 21st Century U.S. Military Manuals: U.S. Marine Corps (USMC) Drill and Ceremonies Manual - Part One, General Drill, Ceremonies, Commands, Flags, Formations, Manual of Arms, Rifle Salute by Progressive Management
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy