The Rewiring Brain

A Computational Approach to Structural Plasticity in the Adult Brain

Nonfiction, Health & Well Being, Psychology, Developmental Psychology, Science & Nature, Science, Biological Sciences
Cover of the book The Rewiring Brain by , Elsevier Science
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9780128038727
Publisher: Elsevier Science Publication: June 23, 2017
Imprint: Academic Press Language: English
Author:
ISBN: 9780128038727
Publisher: Elsevier Science
Publication: June 23, 2017
Imprint: Academic Press
Language: English

The adult brain is not as hard-wired as traditionally thought. By modifying their small- or large-scale morphology, neurons can make new synaptic connections or break existing ones (structural plasticity). Structural changes accompany memory formation and learning, and are induced by neurogenesis, neurodegeneration and brain injury such as stroke.

Exploring the role of structural plasticity in the brain can be greatly assisted by mathematical and computational models, as they enable us to bridge the gap between system-level dynamics and lower level cellular and molecular processes. However, most traditional neural network models have fixed neuronal morphologies and a static connectivity pattern, with plasticity merely arising from changes in the strength of existing synapses (synaptic plasticity). In The Rewiring Brain, the editors bring together for the first time contemporary modeling studies that investigate the implications of structural plasticity for brain function and pathology. Starting with an experimental background on structural plasticity in the adult brain, the book covers computational studies on homeostatic structural plasticity, the impact of structural plasticity on cognition and cortical connectivity, the interaction between synaptic and structural plasticity, neurogenesis-related structural plasticity, and structural plasticity in neurological disorders.

Structural plasticity adds a whole new dimension to brain plasticity, and The Rewiring Brain shows how computational approaches may help to gain a better understanding of the full adaptive potential of the adult brain. The book is written for both computational and experimental neuroscientists.

  • Reviews the current state of knowledge of structural plasticity in the adult brain
  • Gives a comprehensive overview of computational studies on structural plasticity
  • Provides insights into the potential driving forces of structural plasticity and the functional implications of structural plasticity for learning and memory
  • Serves as inspiration for developing novel treatment strategies for stimulating functional repair after brain damage
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

The adult brain is not as hard-wired as traditionally thought. By modifying their small- or large-scale morphology, neurons can make new synaptic connections or break existing ones (structural plasticity). Structural changes accompany memory formation and learning, and are induced by neurogenesis, neurodegeneration and brain injury such as stroke.

Exploring the role of structural plasticity in the brain can be greatly assisted by mathematical and computational models, as they enable us to bridge the gap between system-level dynamics and lower level cellular and molecular processes. However, most traditional neural network models have fixed neuronal morphologies and a static connectivity pattern, with plasticity merely arising from changes in the strength of existing synapses (synaptic plasticity). In The Rewiring Brain, the editors bring together for the first time contemporary modeling studies that investigate the implications of structural plasticity for brain function and pathology. Starting with an experimental background on structural plasticity in the adult brain, the book covers computational studies on homeostatic structural plasticity, the impact of structural plasticity on cognition and cortical connectivity, the interaction between synaptic and structural plasticity, neurogenesis-related structural plasticity, and structural plasticity in neurological disorders.

Structural plasticity adds a whole new dimension to brain plasticity, and The Rewiring Brain shows how computational approaches may help to gain a better understanding of the full adaptive potential of the adult brain. The book is written for both computational and experimental neuroscientists.

More books from Elsevier Science

Cover of the book Regional Geology and Tectonics by
Cover of the book Modern Dictionary of Electronics by
Cover of the book The Molecular Biology of Cadherins by
Cover of the book Core Analysis: A Best Practice Guide by
Cover of the book Biometals in Neurodegenerative Diseases by
Cover of the book Optimization of Manufacturing Systems Using the Internet of Things by
Cover of the book Advances in Clean Hydrocarbon Fuel Processing by
Cover of the book Trends, Discovery, and People in the Digital Age by
Cover of the book The Basics of Digital Forensics by
Cover of the book Project Management in Libraries, Archives and Museums by
Cover of the book Information-Based Inversion and Processing with Applications by
Cover of the book Thermosets and Composites by
Cover of the book Neurologic Aspects of Systemic Disease, Part III by
Cover of the book Adolescence by
Cover of the book Nanomaterials for Medical Applications by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy