Statistical Analysis for High-Dimensional Data

The Abel Symposium 2014

Nonfiction, Science & Nature, Mathematics, Counting & Numeration, Statistics
Cover of the book Statistical Analysis for High-Dimensional Data by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319270999
Publisher: Springer International Publishing Publication: February 16, 2016
Imprint: Springer Language: English
Author:
ISBN: 9783319270999
Publisher: Springer International Publishing
Publication: February 16, 2016
Imprint: Springer
Language: English

This book features research contributions from The Abel Symposium on Statistical Analysis for High Dimensional Data, held in Nyvågar, Lofoten, Norway, in May 2014.

The focus of the symposium was on statistical and machine learning methodologies specifically developed for inference in “big data” situations, with particular reference to genomic applications. The contributors, who are among the most prominent researchers on the theory of statistics for high dimensional inference, present new theories and methods, as well as challenging applications and computational solutions. Specific themes include, among others, variable selection and screening, penalised regression, sparsity, thresholding, low dimensional structures, computational challenges, non-convex situations, learning graphical models, sparse covariance and precision matrices, semi- and non-parametric formulations, multiple testing, classification, factor models, clustering, and preselection.

Highlighting cutting-edge research and casting light on future research directions, the contributions will benefit graduate students and researchers in computational biology, statistics and the machine learning community.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book features research contributions from The Abel Symposium on Statistical Analysis for High Dimensional Data, held in Nyvågar, Lofoten, Norway, in May 2014.

The focus of the symposium was on statistical and machine learning methodologies specifically developed for inference in “big data” situations, with particular reference to genomic applications. The contributors, who are among the most prominent researchers on the theory of statistics for high dimensional inference, present new theories and methods, as well as challenging applications and computational solutions. Specific themes include, among others, variable selection and screening, penalised regression, sparsity, thresholding, low dimensional structures, computational challenges, non-convex situations, learning graphical models, sparse covariance and precision matrices, semi- and non-parametric formulations, multiple testing, classification, factor models, clustering, and preselection.

Highlighting cutting-edge research and casting light on future research directions, the contributions will benefit graduate students and researchers in computational biology, statistics and the machine learning community.

More books from Springer International Publishing

Cover of the book Dynamical Systems with Applications Using Mathematica® by
Cover of the book Quantitative Recombination and Transport Properties in Silicon from Dynamic Luminescence by
Cover of the book Reviews of Environmental Contamination and Toxicology Volume 238 by
Cover of the book Iris Image Recognition by
Cover of the book Applied Immunohistochemistry in the Evaluation of Skin Neoplasms by
Cover of the book Zika Virus Infection by
Cover of the book Geometric Science of Information by
Cover of the book A Century of Change by
Cover of the book Exploring Betty A. Reardon’s Perspective on Peace Education by
Cover of the book ICT Systems Security and Privacy Protection by
Cover of the book Cognitively Inspired Audiovisual Speech Filtering by
Cover of the book Flexible Spacecraft Dynamics, Control and Guidance by
Cover of the book Advances in Petroleum Engineering and Petroleum Geochemistry by
Cover of the book Reshaping Accounting and Management Control Systems by
Cover of the book Open Source Systems: Integrating Communities by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy