Space Shuttle NASA Mission Reports: 1992 Missions, STS-42, STS-45, STS-49, STS-50, STS-46, STS-47, STS-52, STS-53

Nonfiction, Science & Nature, Science, Physics, Astronomy, Other Sciences, History
Cover of the book Space Shuttle NASA Mission Reports: 1992 Missions, STS-42, STS-45, STS-49, STS-50, STS-46, STS-47, STS-52, STS-53 by Progressive Management, Progressive Management
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Progressive Management ISBN: 9781465875648
Publisher: Progressive Management Publication: January 9, 2012
Imprint: Smashwords Edition Language: English
Author: Progressive Management
ISBN: 9781465875648
Publisher: Progressive Management
Publication: January 9, 2012
Imprint: Smashwords Edition
Language: English

These official final program mission reports issued by the NASA Johnson Space Center cover missions in 1992: STS-42, STS-45, STS-49, STS-50, STS-46, STS-47, STS-52, and STS-53. In these thorough reports, with information and specifics not available on NASA website mission descriptions, each orbiter system is reviewed in detail along with technical information on performance and anomalies.

STS-42: The primary objective of the STS-42 mission was to complete the objectives of the first International Microgravity Laboratory (IML-1). The crew for this forty-fifth Space Shuttle flight was Ronald J. Grabe, Col., USAF, Commander; Steven S. Oswald, Pilot; Norman E. Thagard, M.D., Mission Specialist 1 (Payload Commander); William F. Readdy, Mission Specialist 2; David C. Hilmers, Col., USMC, Mission Specialist 3; Roberta L. Bondar, Ph.D, Payload Specialist 1; and Ulf D. Merbold, Ph.D, Payload Specialist 2.

STS-45: The primary objective of this mission was to successfully perform the planned operations of the Atmospheric Laboratory for Applications and Science-1 (ATLAS-1) and the Shuttle Solar Backscatter Ultraviolet Instrument (SSBUV) payloads.

STS-49: The primary objectives of this flight were to perform the operations necessary to re-boost the International Telecommunications Satellite VI (INTELSAT VI) spacecraft and to fulfill the requirements of the Assembly of Station by Extravehicular Activity (EVA) Methods (ASEM) payload.

STS-50: The primary objective of the STS-50 flight was to successfully perform the planned operations of the United States Microgravity Laboratory (USML-1) payload. The secondary objectives of this flight were to perform the operations required by the Investigations into Polymer Membrane Processing (IPMP), and the Shuttle Amateur Radio Experiment II (SAREX-II) payloads.

STS-46: The primary objective of this flight was to successfully deploy the European Retrievable Carrier (EURECA) payload and perform the operations of the Tethered Satellite System-1 (TSS-1) and the Evaluation of Oxygen Interaction with Material Ill/Thermal Energy Management Processes 2A-3 (EOIM-III/TEMP 2A-3).

STS-47: The primary objective of the STS-47 flight was to successfully perform the planned operations of the Spacelab-J (SL-J) payload [containing 43 experiments of which 34 were provided by the Japanese National Space Development Agency (NASDA)]. The secondary objectives of this flight were to perform the operations of the Israeli Space Agency Investigation About Hornets (ISAIAH) payload, the Solid Surface Combustion Experiment (SSCE), the Shuttle Amateur Radio Experiment-II (SAREX-II), and the Get-Away Special (GAS) payloads. The Ultraviolet Plume Instrument (UVPI) was flown as a payload of opportunity.

STS-52: The primary objectives of this flight were to successfully deploy the Laser Geodynamic Satellite (LAGE0S-II) and to perform operations of the United States Microgravity Payload-1 (USMP-1).

STS-53: The primary objective of this flight was to successfully deploy the Department of Defense 1 (DOD-1) payload. The secondary objectives of this flight were to perform the operations required by the Glow Experiment/Cryogenic Heat Pipe Experiment Payload (GCP); the Hand-Held, Earth-Oriented, Real-time, Cooperative, User-Friendly, Location-Targeting and Environmental System (HERCULES); the Space Tissue Loss (STL); the Battlefield Laser Acquisition Sensor Test (BLAST); the Radiation Monitoring Equipment-Ill (RME-III); the Microcapsules in Space-1 (MIS-1); the Visual Function Tester-2 (VFT-2); the Cosmic Radiation Effects and Activation Monitor (CREAM); the Clouds Logic to Optimize Use of Defense Systems-IA (CLOUDS-1A); the Fluids Acquisition and Resupply Experiment (FARE); and the Orbital Debris Radar Calibration Spheres (ODERACS).

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

These official final program mission reports issued by the NASA Johnson Space Center cover missions in 1992: STS-42, STS-45, STS-49, STS-50, STS-46, STS-47, STS-52, and STS-53. In these thorough reports, with information and specifics not available on NASA website mission descriptions, each orbiter system is reviewed in detail along with technical information on performance and anomalies.

STS-42: The primary objective of the STS-42 mission was to complete the objectives of the first International Microgravity Laboratory (IML-1). The crew for this forty-fifth Space Shuttle flight was Ronald J. Grabe, Col., USAF, Commander; Steven S. Oswald, Pilot; Norman E. Thagard, M.D., Mission Specialist 1 (Payload Commander); William F. Readdy, Mission Specialist 2; David C. Hilmers, Col., USMC, Mission Specialist 3; Roberta L. Bondar, Ph.D, Payload Specialist 1; and Ulf D. Merbold, Ph.D, Payload Specialist 2.

STS-45: The primary objective of this mission was to successfully perform the planned operations of the Atmospheric Laboratory for Applications and Science-1 (ATLAS-1) and the Shuttle Solar Backscatter Ultraviolet Instrument (SSBUV) payloads.

STS-49: The primary objectives of this flight were to perform the operations necessary to re-boost the International Telecommunications Satellite VI (INTELSAT VI) spacecraft and to fulfill the requirements of the Assembly of Station by Extravehicular Activity (EVA) Methods (ASEM) payload.

STS-50: The primary objective of the STS-50 flight was to successfully perform the planned operations of the United States Microgravity Laboratory (USML-1) payload. The secondary objectives of this flight were to perform the operations required by the Investigations into Polymer Membrane Processing (IPMP), and the Shuttle Amateur Radio Experiment II (SAREX-II) payloads.

STS-46: The primary objective of this flight was to successfully deploy the European Retrievable Carrier (EURECA) payload and perform the operations of the Tethered Satellite System-1 (TSS-1) and the Evaluation of Oxygen Interaction with Material Ill/Thermal Energy Management Processes 2A-3 (EOIM-III/TEMP 2A-3).

STS-47: The primary objective of the STS-47 flight was to successfully perform the planned operations of the Spacelab-J (SL-J) payload [containing 43 experiments of which 34 were provided by the Japanese National Space Development Agency (NASDA)]. The secondary objectives of this flight were to perform the operations of the Israeli Space Agency Investigation About Hornets (ISAIAH) payload, the Solid Surface Combustion Experiment (SSCE), the Shuttle Amateur Radio Experiment-II (SAREX-II), and the Get-Away Special (GAS) payloads. The Ultraviolet Plume Instrument (UVPI) was flown as a payload of opportunity.

STS-52: The primary objectives of this flight were to successfully deploy the Laser Geodynamic Satellite (LAGE0S-II) and to perform operations of the United States Microgravity Payload-1 (USMP-1).

STS-53: The primary objective of this flight was to successfully deploy the Department of Defense 1 (DOD-1) payload. The secondary objectives of this flight were to perform the operations required by the Glow Experiment/Cryogenic Heat Pipe Experiment Payload (GCP); the Hand-Held, Earth-Oriented, Real-time, Cooperative, User-Friendly, Location-Targeting and Environmental System (HERCULES); the Space Tissue Loss (STL); the Battlefield Laser Acquisition Sensor Test (BLAST); the Radiation Monitoring Equipment-Ill (RME-III); the Microcapsules in Space-1 (MIS-1); the Visual Function Tester-2 (VFT-2); the Cosmic Radiation Effects and Activation Monitor (CREAM); the Clouds Logic to Optimize Use of Defense Systems-IA (CLOUDS-1A); the Fluids Acquisition and Resupply Experiment (FARE); and the Orbital Debris Radar Calibration Spheres (ODERACS).

More books from Progressive Management

Cover of the book Tracking Next-Generation Automatic Identification Technology (AIT) into 2035 - RFID Radio Frequency Tags, Efficient Logistics Operations, Supply Chains, In-Transit Visibility, Enhanced Situational Awareness by Progressive Management
Cover of the book Commander's Guide to Support Operations Among Weaponized Displaced Persons, Refugees, and Evacuees, Purposeful Introduction of Biologically Infected Persons or CBRNE Casualties, WMD Threat at Camps by Progressive Management
Cover of the book Marines in the Korean War Commemorative Series: Counteroffensive - U.S. Marines from Pohang to No Name Line - Matthew Ridgway, Truman Fires MacArthur, Medical Helicopter Evacuation by Progressive Management
Cover of the book Linking Legacies: Connecting the Cold War Nuclear Weapons Production Processes To Their Environmental Consequences - Nuclear and Radioactive Waste, Environmental Contamination by Progressive Management
Cover of the book Vietnam in Perspective - Orientation Guide and Vietnamese Cultural Orientation: Geography, History, Economy, Security, Customs, Ho Chi Minh City (Saigon), Khmer, Montagnards, Hmong, Mahayana Buddhism by Progressive Management
Cover of the book Sudan in Perspective - Orientation Guide and Sudanese Cultural Orientation: Geography, History, Economy, Security, Nubians, Beja, The Beja, Sudan People's Liberation Movement (SPLM), Darfur, Abyei by Progressive Management
Cover of the book 21st Century U.S. Military Manuals: U.S. Marine Corps (USMC) Pistol Marksmanship Marine Corps Reference Publication (MCRP) 3-01B by Progressive Management
Cover of the book 21st Century Peacekeeping and Stability Operations Institute (PKSOI) Papers - The Government Assistance Center: A Vehicle for Transitioning to the Host Government by Progressive Management
Cover of the book 21st Century Peacekeeping and Stability Operations Institute (PKSOI) Papers - Protection of Civilians - Military Reference Guide - PoC Dynamics, Intelligence, Rule of Law, Patrols, Unrest by Progressive Management
Cover of the book 21st Century U.S. Military Manuals: Environmental Considerations in Military Operations Field Manual - FM 3-100.4 (Value-Added Professional Format Series) by Progressive Management
Cover of the book 2013 Complete Guide to MERS-CoV, Middle East Respiratory Syndrome Coronavirus: Serious Emerging Threat Related to SARS, Clinical Management, Prevention and Control, Official Guidelines by Progressive Management
Cover of the book Military Cyber Attacks and America's Vulnerable Nuclear Weapons and Defenses: DoD Task Force Report on Resilient Military Systems and the Advanced Cyber Threat by Progressive Management
Cover of the book Policy Analysis in National Security Affairs: New Methods for a New Era, Weapons, Strategies, Nuclear and Conventional Roles, Alliance Leadership, Stability in a Dangerous World, Promoting Democracy by Progressive Management
Cover of the book 21st Century U.S. Military Documents: Air Force AC-130 Gunship Ground-Attack Aircraft - Operations Procedures, Aircrew Evaluation Criteria, Aircrew Training Flying Operations by Progressive Management
Cover of the book 21st Century U.S. Military Manuals: Combat Service Support Operations - Theater Army Area Command - FM 63-4 (Value-Added Professional Format Series) by Progressive Management
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy