Prediction and Classification of Respiratory Motion

Nonfiction, Computers, Advanced Computing, Artificial Intelligence, General Computing, Health & Well Being, Medical
Cover of the book Prediction and Classification of Respiratory Motion by Suk Jin Lee, Yuichi Motai, Springer Berlin Heidelberg
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Suk Jin Lee, Yuichi Motai ISBN: 9783642415098
Publisher: Springer Berlin Heidelberg Publication: October 25, 2013
Imprint: Springer Language: English
Author: Suk Jin Lee, Yuichi Motai
ISBN: 9783642415098
Publisher: Springer Berlin Heidelberg
Publication: October 25, 2013
Imprint: Springer
Language: English

This book describes recent radiotherapy technologies including tools for measuring target position during radiotherapy and tracking-based delivery systems. 

This book presents a customized prediction of respiratory motion with clustering from multiple patient interactions. The proposed method contributes to the improvement of patient treatments by considering breathing pattern for the accurate dose calculation in radiotherapy systems. Real-time tumor-tracking, where the prediction of irregularities becomes relevant, has yet to be clinically established. The statistical quantitative modeling for irregular breathing classification, in which commercial respiration traces are retrospectively categorized into several classes based on breathing pattern are discussed as well. The proposed statistical classification may provide clinical advantages to adjust the dose rate before and during the external beam radiotherapy for minimizing the safety margin.

In the first chapter following the Introduction  to this book, we review three prediction approaches of respiratory motion: model-based methods, model-free heuristic learning algorithms, and hybrid methods. In the following chapter, we present a phantom study—prediction of human motion with distributed body sensors—using a Polhemus Liberty AC magnetic tracker. Next we describe respiratory motion estimation with hybrid implementation of extended Kalman filter. The given method assigns the recurrent neural network the role of the predictor and the extended Kalman filter the role of the corrector. After that, we present customized prediction of respiratory motion with clustering from multiple patient interactions. For the customized prediction, we construct the clustering based on breathing patterns of multiple patients using the feature selection metrics that are composed of a variety of breathing features. We have evaluated the new algorithm by comparing the prediction overshoot and the tracking estimation value. The experimental results of 448 patients’ breathing patterns validated the proposed irregular breathing classifier in the last chapter.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book describes recent radiotherapy technologies including tools for measuring target position during radiotherapy and tracking-based delivery systems. 

This book presents a customized prediction of respiratory motion with clustering from multiple patient interactions. The proposed method contributes to the improvement of patient treatments by considering breathing pattern for the accurate dose calculation in radiotherapy systems. Real-time tumor-tracking, where the prediction of irregularities becomes relevant, has yet to be clinically established. The statistical quantitative modeling for irregular breathing classification, in which commercial respiration traces are retrospectively categorized into several classes based on breathing pattern are discussed as well. The proposed statistical classification may provide clinical advantages to adjust the dose rate before and during the external beam radiotherapy for minimizing the safety margin.

In the first chapter following the Introduction  to this book, we review three prediction approaches of respiratory motion: model-based methods, model-free heuristic learning algorithms, and hybrid methods. In the following chapter, we present a phantom study—prediction of human motion with distributed body sensors—using a Polhemus Liberty AC magnetic tracker. Next we describe respiratory motion estimation with hybrid implementation of extended Kalman filter. The given method assigns the recurrent neural network the role of the predictor and the extended Kalman filter the role of the corrector. After that, we present customized prediction of respiratory motion with clustering from multiple patient interactions. For the customized prediction, we construct the clustering based on breathing patterns of multiple patients using the feature selection metrics that are composed of a variety of breathing features. We have evaluated the new algorithm by comparing the prediction overshoot and the tracking estimation value. The experimental results of 448 patients’ breathing patterns validated the proposed irregular breathing classifier in the last chapter.

More books from Springer Berlin Heidelberg

Cover of the book Mathematik kompakt by Suk Jin Lee, Yuichi Motai
Cover of the book Regression by Suk Jin Lee, Yuichi Motai
Cover of the book Mental Imagery by Suk Jin Lee, Yuichi Motai
Cover of the book Blood Replacement by Suk Jin Lee, Yuichi Motai
Cover of the book Contrast Media in Radiology by Suk Jin Lee, Yuichi Motai
Cover of the book Analysis and Design of Advice by Suk Jin Lee, Yuichi Motai
Cover of the book Innovation Clusters and Interregional Competition by Suk Jin Lee, Yuichi Motai
Cover of the book Völkerstrafrechtspolitik by Suk Jin Lee, Yuichi Motai
Cover of the book Petrology by Suk Jin Lee, Yuichi Motai
Cover of the book Im Fokus: Meereswelten by Suk Jin Lee, Yuichi Motai
Cover of the book Crossroads in Literature and Culture by Suk Jin Lee, Yuichi Motai
Cover of the book The Dynamic Compression Plate DCP by Suk Jin Lee, Yuichi Motai
Cover of the book Geology and Metallogeny of Copper Deposits by Suk Jin Lee, Yuichi Motai
Cover of the book Small-Bowel Transplantation by Suk Jin Lee, Yuichi Motai
Cover of the book Geschichte des Strafprozessrechts in der Frühen Neuzeit by Suk Jin Lee, Yuichi Motai
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy