Nonparametric Bayesian Inference in Biostatistics

Nonfiction, Health & Well Being, Medical, Reference, Biostatistics, Science & Nature, Mathematics, Science, Biological Sciences
Cover of the book Nonparametric Bayesian Inference in Biostatistics by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319195186
Publisher: Springer International Publishing Publication: July 25, 2015
Imprint: Springer Language: English
Author:
ISBN: 9783319195186
Publisher: Springer International Publishing
Publication: July 25, 2015
Imprint: Springer
Language: English

As chapters in this book demonstrate, BNP has important uses in clinical sciences and inference for issues like unknown partitions in genomics. Nonparametric Bayesian approaches (BNP) play an ever expanding role in biostatistical inference from use in proteomics to clinical trials. Many research problems involve an abundance of data and require flexible and complex probability models beyond the traditional parametric approaches. As this book's expert contributors show, BNP approaches can be the answer. Survival Analysis, in particular survival regression, has traditionally used BNP, but BNP's potential is now very broad. This applies to important tasks like arrangement of patients into clinically meaningful subpopulations and segmenting the genome into functionally distinct regions. This book is designed to both review and introduce application areas for BNP. While existing books provide theoretical foundations, this book connects theory to practice through engaging examples and research questions. Chapters cover: clinical trials, spatial inference, proteomics, genomics, clustering, survival analysis and ROC curve.

 

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

As chapters in this book demonstrate, BNP has important uses in clinical sciences and inference for issues like unknown partitions in genomics. Nonparametric Bayesian approaches (BNP) play an ever expanding role in biostatistical inference from use in proteomics to clinical trials. Many research problems involve an abundance of data and require flexible and complex probability models beyond the traditional parametric approaches. As this book's expert contributors show, BNP approaches can be the answer. Survival Analysis, in particular survival regression, has traditionally used BNP, but BNP's potential is now very broad. This applies to important tasks like arrangement of patients into clinically meaningful subpopulations and segmenting the genome into functionally distinct regions. This book is designed to both review and introduce application areas for BNP. While existing books provide theoretical foundations, this book connects theory to practice through engaging examples and research questions. Chapters cover: clinical trials, spatial inference, proteomics, genomics, clustering, survival analysis and ROC curve.

 

More books from Springer International Publishing

Cover of the book Performing the Northern Ireland Peace Process by
Cover of the book Fairness in Academic Course Timetabling by
Cover of the book Silica-coated Magnetic Nanoparticles by
Cover of the book Image Quality Assessment of Computer-generated Images by
Cover of the book Diseases of the Brain, Head and Neck, Spine 2016-2019 by
Cover of the book Wine Positioning by
Cover of the book World of Computing by
Cover of the book Functional Analysis and Applied Optimization in Banach Spaces by
Cover of the book The Ni-Cu-(PGE) Aguablanca Ore Deposit (SW Spain) by
Cover of the book Spin Physics in Semiconductors by
Cover of the book Gifted Education in Lebanese Schools by
Cover of the book Patient-Derived Xenograft Models of Human Cancer by
Cover of the book Energy Efficiency Clauses in Charter Party Agreements by
Cover of the book Process Intensification in Chemical Engineering by
Cover of the book Carbon Markets by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy