Machine Learning for Health Informatics

State-of-the-Art and Future Challenges

Nonfiction, Computers, Database Management, General Computing, Health & Well Being, Medical
Cover of the book Machine Learning for Health Informatics by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319504780
Publisher: Springer International Publishing Publication: December 9, 2016
Imprint: Springer Language: English
Author:
ISBN: 9783319504780
Publisher: Springer International Publishing
Publication: December 9, 2016
Imprint: Springer
Language: English

Machine learning (ML) is the fastest growing field in computer science, and Health Informatics (HI) is amongst the greatest application challenges, providing future benefits in improved medical diagnoses, disease analyses, and pharmaceutical development. However, successful ML for HI needs a concerted effort, fostering integrative research between experts ranging from diverse disciplines from data science to visualization.
Tackling complex challenges needs both disciplinary excellence and cross-disciplinary networking without any boundaries. Following the HCI-KDD approach, in combining the best of two worlds, it is aimed to support human intelligence with machine intelligence.
This state-of-the-art survey is an output of the international HCI-KDD expert network and features 22 carefully selected and peer-reviewed chapters on hot topics in machine learning for health informatics; they discuss open problems and future challenges in order to stimulate further research and international progress in this field.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Machine learning (ML) is the fastest growing field in computer science, and Health Informatics (HI) is amongst the greatest application challenges, providing future benefits in improved medical diagnoses, disease analyses, and pharmaceutical development. However, successful ML for HI needs a concerted effort, fostering integrative research between experts ranging from diverse disciplines from data science to visualization.
Tackling complex challenges needs both disciplinary excellence and cross-disciplinary networking without any boundaries. Following the HCI-KDD approach, in combining the best of two worlds, it is aimed to support human intelligence with machine intelligence.
This state-of-the-art survey is an output of the international HCI-KDD expert network and features 22 carefully selected and peer-reviewed chapters on hot topics in machine learning for health informatics; they discuss open problems and future challenges in order to stimulate further research and international progress in this field.

More books from Springer International Publishing

Cover of the book Rethinking Think Tanks in Contemporary China by
Cover of the book Scientific Knowledge Communication in Museums by
Cover of the book Perspectives in Business Informatics Research by
Cover of the book Modelling of the Interaction of the Different Vehicles and Various Transport Modes by
Cover of the book Algorithms from and for Nature and Life by
Cover of the book Spin Glasses by
Cover of the book New Cities and Community Extensions in Egypt and the Middle East by
Cover of the book Trends and Challenges in Digital Business Innovation by
Cover of the book The Future of Law and eTechnologies by
Cover of the book Working with Stem Cells by
Cover of the book Green and Lean Management by
Cover of the book Global Thoughts, Local Designs by
Cover of the book Computer and Information Science by
Cover of the book Engineering Applications of Soft Computing by
Cover of the book Hayek: A Collaborative Biography by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy