Incompressible Bipolar and Non-Newtonian Viscous Fluid Flow

Nonfiction, Science & Nature, Mathematics, Differential Equations, Science, Physics, Mathematical Physics
Cover of the book Incompressible Bipolar and Non-Newtonian Viscous Fluid Flow by Hamid Bellout, Frederick Bloom, Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Hamid Bellout, Frederick Bloom ISBN: 9783319008912
Publisher: Springer International Publishing Publication: November 19, 2013
Imprint: Birkhäuser Language: English
Author: Hamid Bellout, Frederick Bloom
ISBN: 9783319008912
Publisher: Springer International Publishing
Publication: November 19, 2013
Imprint: Birkhäuser
Language: English

The theory of incompressible multipolar viscous fluids is a non-Newtonian model of fluid flow, which incorporates nonlinear viscosity, as well as higher order velocity gradients, and is based on scientific first principles. The Navier-Stokes model of fluid flow is based on the Stokes hypothesis, which a priori simplifies and restricts the relationship between the stress tensor and the velocity. By relaxing the constraints of the Stokes hypothesis, the mathematical theory of multipolar viscous fluids generalizes the standard Navier-Stokes model. The rigorous theory of multipolar viscous fluids  is compatible with all known thermodynamical processes and the principle of material frame indifference; this is in contrast with the formulation of most non-Newtonian fluid flow models which result from ad hoc assumptions about the relation between the stress tensor and the velocity. The higher-order boundary conditions, which must be formulated for multipolar viscous flow problems, are a rigorous consequence of the principle of virtual work; this is in stark contrast to the approach employed by authors who have studied the regularizing effects of adding artificial viscosity, in the form of higher order spatial derivatives, to the Navier-Stokes model.
 
A number of research groups, primarily in the United States, Germany, Eastern Europe, and China, have explored the consequences of multipolar viscous fluid models; these efforts, and those of the authors, which are described in this book, have focused on the solution of problems in the context of specific geometries, on the existence of weak and classical solutions, and on dynamical systems aspects of the theory.
 
This volume will be a valuable resource for mathematicians interested in solutions to systems of nonlinear partial differential equations, as well as to applied mathematicians, fluid dynamicists, and mechanical engineers with an interest in the problems of fluid mechanics.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

The theory of incompressible multipolar viscous fluids is a non-Newtonian model of fluid flow, which incorporates nonlinear viscosity, as well as higher order velocity gradients, and is based on scientific first principles. The Navier-Stokes model of fluid flow is based on the Stokes hypothesis, which a priori simplifies and restricts the relationship between the stress tensor and the velocity. By relaxing the constraints of the Stokes hypothesis, the mathematical theory of multipolar viscous fluids generalizes the standard Navier-Stokes model. The rigorous theory of multipolar viscous fluids  is compatible with all known thermodynamical processes and the principle of material frame indifference; this is in contrast with the formulation of most non-Newtonian fluid flow models which result from ad hoc assumptions about the relation between the stress tensor and the velocity. The higher-order boundary conditions, which must be formulated for multipolar viscous flow problems, are a rigorous consequence of the principle of virtual work; this is in stark contrast to the approach employed by authors who have studied the regularizing effects of adding artificial viscosity, in the form of higher order spatial derivatives, to the Navier-Stokes model.
 
A number of research groups, primarily in the United States, Germany, Eastern Europe, and China, have explored the consequences of multipolar viscous fluid models; these efforts, and those of the authors, which are described in this book, have focused on the solution of problems in the context of specific geometries, on the existence of weak and classical solutions, and on dynamical systems aspects of the theory.
 
This volume will be a valuable resource for mathematicians interested in solutions to systems of nonlinear partial differential equations, as well as to applied mathematicians, fluid dynamicists, and mechanical engineers with an interest in the problems of fluid mechanics.

More books from Springer International Publishing

Cover of the book Rotordynamics of Automotive Turbochargers by Hamid Bellout, Frederick Bloom
Cover of the book Exploring the Psychological Benefits of Hardship by Hamid Bellout, Frederick Bloom
Cover of the book Medical Computer Vision: Algorithms for Big Data by Hamid Bellout, Frederick Bloom
Cover of the book Disrupting Mobility by Hamid Bellout, Frederick Bloom
Cover of the book The Modes of Gaseous Combustion by Hamid Bellout, Frederick Bloom
Cover of the book Microfluidic Very Large Scale Integration (VLSI) by Hamid Bellout, Frederick Bloom
Cover of the book Nordic Contributions in IS Research by Hamid Bellout, Frederick Bloom
Cover of the book Integrated Spatial and Transport Infrastructure Development by Hamid Bellout, Frederick Bloom
Cover of the book Romanticism and Aesthetic Life in Postcolonial Writing by Hamid Bellout, Frederick Bloom
Cover of the book Vacuum Drying for Extending Food Shelf-Life by Hamid Bellout, Frederick Bloom
Cover of the book Special Topics in Structural Dynamics, Volume 6 by Hamid Bellout, Frederick Bloom
Cover of the book Adult Lumbar Scoliosis by Hamid Bellout, Frederick Bloom
Cover of the book Advances in Ergonomics in Design by Hamid Bellout, Frederick Bloom
Cover of the book Sports Science Research and Technology Support by Hamid Bellout, Frederick Bloom
Cover of the book Distributed Leadership by Hamid Bellout, Frederick Bloom
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy