Global Transcriptional Responses of Fission Yeast to Glucose Starvation Stress

Nonfiction, Science & Nature, Science, Biological Sciences, Genetics
Cover of the book Global Transcriptional Responses of Fission Yeast to Glucose Starvation Stress by Michael Sassen, GRIN Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Michael Sassen ISBN: 9783638400572
Publisher: GRIN Publishing Publication: July 20, 2005
Imprint: GRIN Publishing Language: English
Author: Michael Sassen
ISBN: 9783638400572
Publisher: GRIN Publishing
Publication: July 20, 2005
Imprint: GRIN Publishing
Language: English

Diploma Thesis from the year 2005 in the subject Biology - Genetics / Gene Technology, grade: 1,1, TU Bergakademie Freiberg, 116 entries in the bibliography, language: English, abstract: 1. Introduction 1.1 Schizosaccharomyces pombe as a Model System S. pombe functions as a suitable model system since it is easy and inexpensive to rear, has a convenient size, a short life cycle, and is genetically manipulable. As a unicellular eukaryote, the fission yeast S. pombe can exist either in a haploid or diploid state and possesses two different mating types (h+ and h-). The wild type, however, is h90, which means it can switch mating type. Figure 1.01: Left, picture of S. pombe cells At top are two dividing cells in late mitotic phase, showing the fission yeast typical septum at the point of cytoplasmic division. The lower cell is in early M phase, having its chromosomes already segregated. Figure 1.02: Right, fission yeast cell cycle Diagrammatic representation of the S. pombe cell cycles with the interchange between the two occurring in G1 phase (Figure obtained and used with permission from Trevor Pemberton, University of Sussex). [...] S. pombe can undergo two different life cycles, either the vegetative (mitotic) cycle or the sporulation (meiotic) cycle, depending on the environment it is living in. These two cycles are shown in figure 2 with the change between the two occurring in cells at the G1 stage of the mitotic cycle. Under laboratory conditions, given all nutrients required, S. pombe prefers the haploid state. This makes it a favorable organism for genetic research since it ensures that introduced mutations are not masked by another wild type allele. [...]

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Diploma Thesis from the year 2005 in the subject Biology - Genetics / Gene Technology, grade: 1,1, TU Bergakademie Freiberg, 116 entries in the bibliography, language: English, abstract: 1. Introduction 1.1 Schizosaccharomyces pombe as a Model System S. pombe functions as a suitable model system since it is easy and inexpensive to rear, has a convenient size, a short life cycle, and is genetically manipulable. As a unicellular eukaryote, the fission yeast S. pombe can exist either in a haploid or diploid state and possesses two different mating types (h+ and h-). The wild type, however, is h90, which means it can switch mating type. Figure 1.01: Left, picture of S. pombe cells At top are two dividing cells in late mitotic phase, showing the fission yeast typical septum at the point of cytoplasmic division. The lower cell is in early M phase, having its chromosomes already segregated. Figure 1.02: Right, fission yeast cell cycle Diagrammatic representation of the S. pombe cell cycles with the interchange between the two occurring in G1 phase (Figure obtained and used with permission from Trevor Pemberton, University of Sussex). [...] S. pombe can undergo two different life cycles, either the vegetative (mitotic) cycle or the sporulation (meiotic) cycle, depending on the environment it is living in. These two cycles are shown in figure 2 with the change between the two occurring in cells at the G1 stage of the mitotic cycle. Under laboratory conditions, given all nutrients required, S. pombe prefers the haploid state. This makes it a favorable organism for genetic research since it ensures that introduced mutations are not masked by another wild type allele. [...]

More books from GRIN Publishing

Cover of the book Symbolic space - constitution on the edge by Michael Sassen
Cover of the book The Prospects of Democracy in Nepal by Michael Sassen
Cover of the book Innovation and new product development by Michael Sassen
Cover of the book Foreign Direct Investment - Managing International Joint Venture - Case: NAFTA by Michael Sassen
Cover of the book Global Corporate Strategy - Honda Case Study by Michael Sassen
Cover of the book Indian English as an ESL-variety: common core and interference by Michael Sassen
Cover of the book Myanmar: pre-colonial & colonial socio-economic developments by Michael Sassen
Cover of the book Thane Rosenbaum: Elijah Visible - a mirror of Jewish life torn between history and tradition and contemporary American society by Michael Sassen
Cover of the book Ziele und Aufgaben des Kostenmanagements by Michael Sassen
Cover of the book How far was religion a cause of the troubles in Northern Ireland from the 1960s to the 1980s? by Michael Sassen
Cover of the book Child's Perspective in Hemingway's My Old Man by Michael Sassen
Cover of the book John Dos Passos´s 'The Big Money': Critical Perceptions of the United States during the 1920s by Michael Sassen
Cover of the book 4D Image Verification by Michael Sassen
Cover of the book International Law and Human Rights. Hate Speech as a Symptom and Cause of Hatred by Michael Sassen
Cover of the book Evaluation of the Fraunhofer Open Source IMS Core platform with special focus on the Call Session Control Function (CSCF) by Michael Sassen
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy