Functional Characterization of Arabidopsis Phosphatidylinositol Monophosphate 5-kinase 2 in Lateral Root Development, Gravitropism and Salt Tolerance

Nonfiction, Science & Nature, Science, Biological Sciences, Biochemistry, Botany
Cover of the book Functional Characterization of Arabidopsis Phosphatidylinositol Monophosphate 5-kinase 2 in Lateral Root Development, Gravitropism and Salt Tolerance by Yu Mei, Springer Netherlands
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Yu Mei ISBN: 9789401793735
Publisher: Springer Netherlands Publication: September 4, 2014
Imprint: Springer Language: English
Author: Yu Mei
ISBN: 9789401793735
Publisher: Springer Netherlands
Publication: September 4, 2014
Imprint: Springer
Language: English

The functional characterization of a key enzyme in the phosphatidylinositol (PI) signaling pathway in the model plant Arabidopsis thaliana is the focus of the research summarised in this thesis. Moreover, a particular focus is the exploration of the biological functions of Arabidopsis phophatidylinositol monophosphate 5-kinase 2 (PIP5K2) which catalyzes the synthesis of phophatidylinositol (4,5) bisphosphate, the precursor of two important second messengers (inositol 1,4,5-trisphosphate and diacylglycerol). Through molecular and genetic approaches, the author isolated and characterized the expression pattern, physiological functions and the underlying mechanism of Arabidopsis PIP5K2. It is found that PIP5K2 is involved in regulating lateral root formation and root gravity response through modulating auxin accumulation and polar auxin transport and also plays a critical role in salt tolerance. These findings shed new light on the crosstalk between PI signaling and auxin response, both of which have crucial regulatory roles in plant development.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

The functional characterization of a key enzyme in the phosphatidylinositol (PI) signaling pathway in the model plant Arabidopsis thaliana is the focus of the research summarised in this thesis. Moreover, a particular focus is the exploration of the biological functions of Arabidopsis phophatidylinositol monophosphate 5-kinase 2 (PIP5K2) which catalyzes the synthesis of phophatidylinositol (4,5) bisphosphate, the precursor of two important second messengers (inositol 1,4,5-trisphosphate and diacylglycerol). Through molecular and genetic approaches, the author isolated and characterized the expression pattern, physiological functions and the underlying mechanism of Arabidopsis PIP5K2. It is found that PIP5K2 is involved in regulating lateral root formation and root gravity response through modulating auxin accumulation and polar auxin transport and also plays a critical role in salt tolerance. These findings shed new light on the crosstalk between PI signaling and auxin response, both of which have crucial regulatory roles in plant development.

More books from Springer Netherlands

Cover of the book Myocardial Infarction by Yu Mei
Cover of the book Future Cities: Dynamics and Sustainability by Yu Mei
Cover of the book Military R&D after the Cold War by Yu Mei
Cover of the book Witches, Scientists, Philosophers: Essays and Lectures by Yu Mei
Cover of the book Liberalism by Yu Mei
Cover of the book Hegel and the History of Philosophy by Yu Mei
Cover of the book Contrast Agents in Liver Imaging by Yu Mei
Cover of the book Kinetics and Dynamics by Yu Mei
Cover of the book Floods in a Megacity by Yu Mei
Cover of the book Recent Progress in Brain and Cognitive Engineering by Yu Mei
Cover of the book Apoptosome by Yu Mei
Cover of the book Male and Female: An Approach to Thomas Mann’s Dialectic by Yu Mei
Cover of the book Lessons learned from Long-term Soil Fertility Management Experiments in Africa by Yu Mei
Cover of the book Dietary Fats, Prostanoids and Arterial Thrombosis by Yu Mei
Cover of the book Acta Historiae Neerlandicae/Studies on the History of the Netherlands VI by Yu Mei
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy