Device Applications of Silicon Nanocrystals and Nanostructures

Nonfiction, Science & Nature, Technology, Nanotechnology, Material Science
Cover of the book Device Applications of Silicon Nanocrystals and Nanostructures by , Springer US
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9780387786896
Publisher: Springer US Publication: December 11, 2008
Imprint: Springer Language: English
Author:
ISBN: 9780387786896
Publisher: Springer US
Publication: December 11, 2008
Imprint: Springer
Language: English

Recent developments in the technology of silicon nanocrystals and silicon nanostructures, where quantum-size effects are important, are systematically described including examples of device applications. Due to the strong quantum confinement effect, the material properties are freed from the usual indirect- or direct-bandgap regime, and the optical, electrical, thermal, and chemical properties of these nanocrystalline and nanostructured semiconductors are drastically changed from those of bulk silicon. In addition to efficient visible luminescence, various other useful material functions are induced in nanocrystalline silicon and periodic silicon nanostructures. Some novel devices and applications, in fields such as photonics (electroluminescence diode, microcavity, and waveguide), electronics (single-electron device, spin transistor, nonvolatile memory, and ballistic electron emitter), acoustics, and biology, have been developed by the use of these quantum-induced functions in ways different from the conventional scaling principle for ULSI.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Recent developments in the technology of silicon nanocrystals and silicon nanostructures, where quantum-size effects are important, are systematically described including examples of device applications. Due to the strong quantum confinement effect, the material properties are freed from the usual indirect- or direct-bandgap regime, and the optical, electrical, thermal, and chemical properties of these nanocrystalline and nanostructured semiconductors are drastically changed from those of bulk silicon. In addition to efficient visible luminescence, various other useful material functions are induced in nanocrystalline silicon and periodic silicon nanostructures. Some novel devices and applications, in fields such as photonics (electroluminescence diode, microcavity, and waveguide), electronics (single-electron device, spin transistor, nonvolatile memory, and ballistic electron emitter), acoustics, and biology, have been developed by the use of these quantum-induced functions in ways different from the conventional scaling principle for ULSI.

More books from Springer US

Cover of the book Changing Substance Abuse Through Health and Social Systems by
Cover of the book Guide to Quality Management Systems for the Food Industry by
Cover of the book The Generation of High Magnetic Fields by
Cover of the book Biomedical Scientists and Public Policy by
Cover of the book Wilson’s Disease by
Cover of the book Psychiatric Nursing Skills by
Cover of the book Tectonics and the Formation of Magmas by
Cover of the book Case Studies in Forensic Epidemiology by
Cover of the book Spinal Narcotics by
Cover of the book Cushing’s Syndrome by
Cover of the book The Economics of Audit Quality by
Cover of the book Diversity Issues in Substance Abuse Treatment and Research by
Cover of the book Regulation Under Increasing Competition by
Cover of the book Understanding Psychological Testing in Children by
Cover of the book Preventing Youth Problems by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy