Data Analytics for Traditional Chinese Medicine Research

Nonfiction, Computers, Database Management, General Computing, Health & Well Being, Medical
Cover of the book Data Analytics for Traditional Chinese Medicine Research by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319038018
Publisher: Springer International Publishing Publication: February 19, 2014
Imprint: Springer Language: English
Author:
ISBN: 9783319038018
Publisher: Springer International Publishing
Publication: February 19, 2014
Imprint: Springer
Language: English

This contributed volume explores how data mining, machine learning, and similar statistical techniques can analyze the types of problems arising from Traditional Chinese Medicine (TCM) research. The book focuses on the study of clinical data and the analysis of herbal data. Challenges addressed include diagnosis, prescription analysis, ingredient discoveries, network based mechanism deciphering, pattern-activity relationships, and medical informatics. Each author demonstrates how they made use of machine learning, data mining, statistics and other analytic techniques to resolve their research challenges, how successful if these techniques were applied, any insight noted and how these insights define the most appropriate future work to be carried out. Readers are given an opportunity to understand the complexity of diagnosis and treatment decision, the difficulty of modeling of efficacy in terms of herbs, the identification of constituent compounds in an herb, the relationship between these compounds and biological outcome so that evidence-based predictions can be made. Drawing on a wide range of experienced contributors, Data Analytics for Traditional Chinese Medicine Research is a valuable reference for professionals and researchers working in health informatics and data mining. The techniques are also useful for biostatisticians and health practitioners interested in traditional medicine and data analytics.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This contributed volume explores how data mining, machine learning, and similar statistical techniques can analyze the types of problems arising from Traditional Chinese Medicine (TCM) research. The book focuses on the study of clinical data and the analysis of herbal data. Challenges addressed include diagnosis, prescription analysis, ingredient discoveries, network based mechanism deciphering, pattern-activity relationships, and medical informatics. Each author demonstrates how they made use of machine learning, data mining, statistics and other analytic techniques to resolve their research challenges, how successful if these techniques were applied, any insight noted and how these insights define the most appropriate future work to be carried out. Readers are given an opportunity to understand the complexity of diagnosis and treatment decision, the difficulty of modeling of efficacy in terms of herbs, the identification of constituent compounds in an herb, the relationship between these compounds and biological outcome so that evidence-based predictions can be made. Drawing on a wide range of experienced contributors, Data Analytics for Traditional Chinese Medicine Research is a valuable reference for professionals and researchers working in health informatics and data mining. The techniques are also useful for biostatisticians and health practitioners interested in traditional medicine and data analytics.

More books from Springer International Publishing

Cover of the book Mussolini and the Salò Republic, 1943–1945 by
Cover of the book Innovation in Medicine and Healthcare 2015 by
Cover of the book Lentigo Maligna Melanoma by
Cover of the book Succession Law, Practice and Society in Europe across the Centuries by
Cover of the book Science Teacher Preparation in Content-Based Second Language Acquisition by
Cover of the book RNA and DNA Diagnostics by
Cover of the book Oculoplastic Surgery Atlas by
Cover of the book Scientists, Democracy and Society by
Cover of the book The Energy-Climate Continuum by
Cover of the book Big Data Analytics in the Social and Ubiquitous Context by
Cover of the book Entrepreneurship in Emerging Economies by
Cover of the book A Global Overview of the Conservation of Freshwater Decapod Crustaceans by
Cover of the book Higgs, Supersymmetry and Dark Matter After Run I of the LHC by
Cover of the book The Many Faces of Elastica by
Cover of the book Digital Government by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy