Correlated Random Systems: Five Different Methods

CIRM Jean-MorletChair, Spring 2013

Nonfiction, Science & Nature, Science, Physics, Mathematical Physics, Mathematics, Statistics
Cover of the book Correlated Random Systems: Five Different Methods by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319176741
Publisher: Springer International Publishing Publication: June 9, 2015
Imprint: Springer Language: English
Author:
ISBN: 9783319176741
Publisher: Springer International Publishing
Publication: June 9, 2015
Imprint: Springer
Language: English

This volume presents five different methods recently developed to tackle the large scale behavior of highly correlated random systems, such as spin glasses, random polymers, local times and loop soups and random matrices. These methods, presented in a series of lectures delivered within the Jean-Morlet initiative (Spring 2013), play a fundamental role in the current development of probability theory and statistical mechanics. The lectures were: Random Polymers by E. Bolthausen, Spontaneous Replica Symmetry Breaking and Interpolation Methods by F. Guerra, Derrida's Random Energy Models by N. Kistler, *Isomorphism Theorems *by J. Rosen and Spectral Properties of Wigner Matrices by B. Schlein.

This book is the first in a co-edition between the Jean-Morlet Chair at CIRM and the Springer Lecture Notes in Mathematics which aims to collect together courses and lectures on cutting-edge subjects given during the term of the Jean-Morlet Chair, as well as new material produced in its wake. It is targeted at researchers, in particular PhD students and postdocs, working in probability theory and statistical physics.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This volume presents five different methods recently developed to tackle the large scale behavior of highly correlated random systems, such as spin glasses, random polymers, local times and loop soups and random matrices. These methods, presented in a series of lectures delivered within the Jean-Morlet initiative (Spring 2013), play a fundamental role in the current development of probability theory and statistical mechanics. The lectures were: Random Polymers by E. Bolthausen, Spontaneous Replica Symmetry Breaking and Interpolation Methods by F. Guerra, Derrida's Random Energy Models by N. Kistler, *Isomorphism Theorems *by J. Rosen and Spectral Properties of Wigner Matrices by B. Schlein.

This book is the first in a co-edition between the Jean-Morlet Chair at CIRM and the Springer Lecture Notes in Mathematics which aims to collect together courses and lectures on cutting-edge subjects given during the term of the Jean-Morlet Chair, as well as new material produced in its wake. It is targeted at researchers, in particular PhD students and postdocs, working in probability theory and statistical physics.

More books from Springer International Publishing

Cover of the book Design of Arithmetic Circuits in Quantum Dot Cellular Automata Nanotechnology by
Cover of the book Smart Grid and Internet of Things by
Cover of the book New Trends in Medical and Service Robots by
Cover of the book Community Informatics Design Applied to Digital Social Systems by
Cover of the book History of Military Cartography by
Cover of the book Advances in Architectural Geometry 2014 by
Cover of the book It's All About Coordination by
Cover of the book An Introduction to Relativistic Processes and the Standard Model of Electroweak Interactions by
Cover of the book Soft Computing in Computer and Information Science by
Cover of the book Digital Human Modeling: Applications in Health, Safety, Ergonomics and Risk Management: Ergonomics and Health by
Cover of the book Tensor Categories and Endomorphisms of von Neumann Algebras by
Cover of the book Advances in Computer Vision by
Cover of the book Expectations and Disappointments of Industrial Innovations by
Cover of the book Aromatic Hydroxyketones: Preparation & Physical Properties by
Cover of the book Formal Techniques for Safety-Critical Systems by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy